
CS41

0 ACCURATE EIGFINVALUES OF A SYMMETRIC

TRI-DIAGONAL MATRIX

BY
W. KAHAN

TECHNICAL REPORT NO. CS41

JULY 22, 1966

FOR FEDERAL SCIENTIFIC AND DDC
TEciiNICAL INF ORMATION

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY



ACCURATE EIGENVALUES OF A SYMMETRIC

TRI-DIAGONAL MATRIX

By

W. Kahan-

ABSTRACT

Having established tight bounds for the quotient of two different

lub-norms of the same tri-diagonal matrix J , the author observes that

these bounds could be of use in an error-analysis provided a suitable

algorithm were found. Such an algorithm is exhibted, and its errors are

thoroughly accounted. for, including the effects of scaling, over/under-

flow and roundoff. A typical result is that, on a computer using rounded

floating po:lnt binary arithmetic, the biggest eigenvalue of J can be

computed easily to within 2,9 units in its last place,9 and the smaller

eigenvaluer, will suffer absolute errors which are no larger. These

results are somewhat stronger than had been known before,
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Two Questions:

The following questions are connected with certain error-analyses of

the computed eigenvolues of the symmetric tri-diagonal NXN matrix

a b1

b a 2 b2

SNb .

bN~l

b a N

Our notation is very much like Householder's (1964); we write

luts(A) s (max. eigenvalue of AHA)1/2 and lubE(A) E maxlfjIA,, lub,(IAI)

where lAlIj E lAiji . The questions are

I.: What bounds can be found for lubs(J)/lubE(J) ?

2: What bounds can be found for lubs(J)/lubs(IJI) ?

We shall see that the answers are respectively

1: " '-< lub S(J)/Ub E (J)<: lub s(J)/Iub S(JI)

2: 2< lubI(J)/lubs(IJI) < I

The only new results here are the lower bounds J and the other

inequalities are well known and will not be proved here. (For proofs see

Householder's book, •§2.2 to 2.4, with which the reader must be assumed

to have extensive acquaintance.) Part of the interest in the constants

and arises because they are best possible, and much larger
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than the lower bound -\ 1/N which would be required if J were replaced

by an arbitrary (symmetric) matrix in the inequalities above. A brief

survey of such more general (and therefore weaker) bounds is given by

Mrs. B. J. Stone (1962).

Proof of 1:

The results which we wish to prove are insensitive to diagonal simi-

larity transformations and to the replacement of J by -J . Therefore

we may assume without loss of generality that all bi > 0 . We shall write

b a bN a 0 and

rl Ebi + bi

Hence

lubE (J) - lub E(IJI) , maxi(IaI + ri)

I8%I + r k

for some k defined (perhaps not uniquely) by the last equation. No

generality is lost by assuming that a > 0 , so

a k + rk = lubE (J) > ail + ri for all i

Now, lubs(J) is the largest or the magnitudes of the eigenvalues

of J , so the minimax characterization of those eigenvalues (see
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Iouseho.](ler's book, § 53.-1) implies that

lubs(J) > lubs(K)

for ony principal submatrix K of J • It is particularly conve-ient

here to take

a kl b kl

K bk-. a k bk

0 bk a k+l

A related matriA K is obtained by reflecting K in its skew-diagonal;

Sk+l 'bk 0

1ý a 1) Sk b ..

o bk-1 ak-.I

J 'his clc.1C(ton changes no eigenvalue, so

lubS (K) = .lubS ( l lub (K

Consequenitly

,LUbS(J )/I.UbE (J) "; iubs (X)

where

X a !(K + /(a + r

2 .. k



It is convenient now to define

x M irW(ak + rk) and

Y 0 (ak-l + ak+l)/ (28k + rk)

Obviously 0< x <_ Also -1 <_ y< S because2'

1*k-1 + 'k+11 < I'k-l' + 18k+I1

<_ (ak + rk - rk-1) + (sk + rk - rk+l)

<(ak + rk - bk-l) + (ak + rk - bk)

- 2 ak + rk .

The matrix X can be expressed simply in terms of x and y thus:

y-xy x 0

X. x 1-2x x

0 x y-xy

A further simplification is achieved by the use of the orthogonal matrix

1 0 0
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and the 2X2 matrix

1-2x "C~x

Z=
-\/2x y-xy

which are connected to X by the eigenvalue-preserving similarity trans-

formation

QTxQ =

0 y-xy

Since y-xy separates the two eigenvalues of Z , these two eigenvalues

must be the algebraically greatest and least eigenvalues of X . Therefore

our progress so far can be summarized by the inequality

lubs(J)/lubE(J) > lUbs(Z)

and our result no. 1 will be proved when we have shown that

lubs(z) >_

This last inequality is obtained below from a demonstration that

i -=min.lubs(Z) over (0 < x <_ and -1 < y ) .
V\FTS -2

Let the eigenvalues of Z be regarded now a~s functions of y for a

fixed x . They are both monotonic non-decreasing functions of y because



any increase in y is tantamount to adding to 7 some positive multiple

of the positive semi-definite matrix

0 0

0 l-x

The value

YO 2 -(. 2x)/(.L - x)

satisfies -1 < yo '<- 0 ; and when y ;ty 0 the eigenvalues of Z are

just +z and -zo , where

0 M

The values y and z are sign:ificant 'because for ,ny other value of' y

the matrix Z hao either a positive eigenvalue > z

-- 0or, a, negutilve o).g',en wul-ue < , v ,

lIn other words,

z0 = min lubS(Z) over .,.1 < y < I

for any fixed x in 0 < x <. And z minimum vi Iku LU taken

when x & . ...3
The foregoing proof that Pub (J)/ i.u'b (J) > " aso pol.nts to an

E-

example
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-1 1 o)

'1= 1 1 1

0 1 -1

with lubs(J) =\/Tand lubE(J) .5 ; therefore the lower bound

cannot be increased.

Proof of 2:

We wish to show that lubB(J)/lubS(IJI) > * As before, we

assume without loss of generality that all bi > 0 . It is convenient to

begin with some definitions. First let

max. eigenvalue of IJl

Second, define

M

Evidently M is a non-negative diagonal matrix whose positive elements

are just the positive diagonal elements of -J . For the sake of symmetry

we should like to have a similar definition for the non-negative diagonal

matrix P whose positive elements are just the positive diagonal elements

of +J . Such a definition is provided in stages as follows. We define

E 0 diag(-l., +1, -1,..., (_,)N)
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and uze it in an elgenvalue-preserving similarity transformation to define

the matrix

J =-EJE

whose eigenvalues and diagonal elements are Just the negatives of those

of J . But J has the same off-diagonal elements as J and IJl I
Therefore the matrix

1E7(IJI - j)

is defined in much the same way as was M . Note that PM = 0 . Finally,

because J2 and J have the same eigenvalues,

% E lub s(J) - lubs(J)

Now we may proceed to demonstrate that /ý L

According bo the theory of non-negative matrices outlined in §2.4

of Householder's book, there must exist some non-negativ•e vector y such

that

IJv_ 4v_ >? o and vTv

Since (lub (J)) 2 = max.xTj 2x over xTx

A2 >VT2= vT(IJI 2M)2v

Sv2 - T My + 4vTM2V

8



Similarly,

N. >2 T72v = vT(IJl - 2P)2v

= i2 -4 ý_vTPv_ + 4vT P2 v

Adding and using the fact that PM = 0 yields

2%2 > 2 2 _ 4vT(M + P)(I M - P)v

But M + P = diag(laia) , and

Therefore

4T(M + p)(1- M - P)v < 2v T

and so

2% 2ýt2 2 = t2

as desired. Result no. 2 is proved.

This proof points less directly than did the proof of result no. 2.

to an example J for whic..h the second bound is achieved, i.e. for which

lub (W)= 1N/-mbs(JI)

9



In fact, the foregoing proof was motivated by a foreknowledge of the fol-

lowing example.

Let a l for l<i<N ,and b= for 1 < i < N
S2 i

The value of x will be chosen later to be the same as t defined above,

but f~rst we observe that now

1 1
P+ M- I, P- M-='xE

and

C =" -J C - ýDxE

1

is an NXN matrix with zero on the diagonal and on the subdiagonal and

superdiagonal. The eigenvalues of C are well-known; they are just the

numbers

n - cos nv/(N + 1) for n = 1,2,..., N

(See Householder's book, p. 34 ex. 50. His matrix J is defined on Y. 2

and differs from ours. His K = 2C .) In particular, since

IkIl = C + 7•I,

1

Next let us compute the largest eigenvalue X of J2 The computa. ion

is considerably shortened by Jim Varah's observation that

2 2 1 2J- =C + V I
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2 + 12Therefore % 7 + The ratio \/. takes on its minimum value

whx2 e x = 27" . This example shows that the lower boundw1

cannot be increased.

Application:

Let the eigenvalues i of J be ordered thus:

1l " 2 -"'<- N- I- S %N

and suppose the eigenvalues (\ + Si) of (J + 5J) are ordered simi-
larly; %i + 5%, S Xi+1 + 6%,+1 Here the matrix 5J is a perturbation

attributed, possibly, to rounding errors in a numerical calculation. We

shall assume that 5J is tri-diagonal with elements bounded by, say,

ba.i I S xalai and lbbiI: PjIbj1

where a and • are small positive constants. Given a and • , how

big can 5%i be ?

The easiest bound for 5K uses the fact that, if the eigenvalues of

5J a re

5 < .. < 2N ,

then I < b\i < N.

1- ii



A proof of this relation can be found in Householder's book (1964) p. 79.

Consequently

1;5%11 lUbs(WJ) < lubs(5JI) lubE(6J)

In particular, if a = then 15JI < aIJI elementwise, so

15 -ý/2a lubS(J) = -Vl max 11%KI

for all I by virtue of the inequality no. 2. More generally, inequality

no. 2 can be extended without any difficulty to the case that a / 8 and

yields the bound

5jI <1 ( lubSIJ(I 5J I + fl2 hibs(J)

Though pessimistic, these bounds are slightly stronger than the best bounds

available in terms of lubE(J) . But are there any practical circumstances

where such bounds may be of use? They rely upon the inequalities

ba5il :ýalai and 16bl:S plbil

whereas the typical rounding error analyses of the past have contained

weaker constraints like

IVali < a lubs(J) and lIb~l < p uub,(J)

12



(cf. Wilkinson's book (1965) p. 304). Thus we are faced with the following

problem:

Given a set of error-bounds, find a numerical algorithm to which

they are applicable.

This problem hes an elegant solution which is described below.

135



The Algorithm:

We shall now exhibit and completely error-analyze a simple and effec-

tive method for computing any eigenvalue Xk of J The basic method

was first put forth in Dr. Boris Davison's numerical analysis lectures at

the University of Toronto in 1959, and begins with

Sylvester's Law of Inertia:

Suppose A = AT is symmetric

L is non-singular, and

D s LI A(L)T is diagonal.

Then the numbers of positive, negative and zero

diagonal elements of D are the same respectively

as thL. numbers of positive, negative and zero eigen-

values of A .

A proof may be found in any standard text on matrices; e.g. in Gantnacher

(1959) vol. I p. 297. We shall apply this Law to the triangular factori-

zation of

J - xI = LU = LDL5T

into triangular bi-diagonal matrices L and U obtained by Gaussian

elimination without pivotal interchanges,, It is unnecessary to compute

any but the diagonal elements un of U . They are obtained from the

simple recurrence

uI = a -x and

un= a -x - b 2
1/un1  for n =2,3,..., N

n n n- 1

14



This recurrence breaks down if and only if some value Un = 0 , but such

a thing can happen only if x takes on one of at most •lN(N + 1) excep-

tional values. Indeed, it is easy to see that

Un = U n(x) = n(x)/ 1n-l(x)

where cpn(x) is the characteristic polynomial of the first nXn principal

submatrix of J . In particular,

(N(x) = det(J - xI)

Consequently, the recurrence can break down only if x coincides with

one of the eigenvalues of one of the leading principal iubmatrices of J

Let us postpone the discussion of these exceptional values of x ; suppose

for now that the recurrence is successful, and compute

v(x) E (the number of values un(x) < 0)

Sylvester's Law implies that

v(x) = (the number of J's eigenvalues Xi x)

Therefore any selected eigenvalue Xk can be computed as the limit of a

sequence of nested intervals [S, ' I with
m

v(x) < k <_ (x) for all m

15



x < m+ < xM < x for all m-if--m+- rn+1- m

and x - x - 0 as m -+cm -M

The mechanism by which the successive values x and x are chosen is-m m

of no consequence here; a bisection method could be used (cf. Wilkinson

(1962)), though that is slow. A faster algorithm has been produced by the

author and Jim Varah (1966). But the error-analysis is independent of the

way in which the values x and x are chosen provided they have the-m m

properties listed above.

So far we have not seen anything very new. Indeed, the function

v(x) is Just the number of variations of sign in the Sturm sequence

CP N I , P (x) , ,...,CP (

which has been in use for over a decade to compute the eigenvalues of

symmetric tri-diagonal matrices. (See Wilkinson's book (1965) p. 299-312.

Also see Householder's book (1964) p. 86-7 ex. 10 and ii, and p. 175 ex. 14;

his qn differs from ours by a factor of ()i)n However, the cp-recurrence

2

pn = (an -X)p 1 -bnn 2

takes more time on most machines than does the u-recurrence; and over/

underflow is an inescapable complication in the ýp-recurrence whereas the

u-recurrence can be rendered almost immune to over/underflow. These are

the reasons Davison gave for his preference of' the u-recurrence. Unfor-

tunately, he died before he had the chance to show how well, behaved his

method could be. The task of analysis is now ours.

16



Over/lJnderflow on the machine

Over/underflow in the u-recurrence can easily be rendered insignificant

by a proper preliminary scaling of the data ai and bi * The description

of the scaling process begins with a definition of certain machine constants:

0 is the greatest floating point number normally

represented directly in the machine.

Sis the smallest positive (non-zero) floating point

number normally represented directly.

is the smallest positive floating point number

such that the computed value of 1.0 + c differs

from 1.0 after it is rounded or truncated to the

precision being carried.

The following table lists typical values for these parameters:

17
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We must also make certain assumptions about the treatment of arithmietic

over/underflows, because they will occur. First, we assume that whenever

any floating point arithmetic operation (+ , - , X , /) underflows its

result will be cleared to zero. Second, we assume that whenever any opera-

tion overflows its result will be set to +0 or -Q with the corrpct sign.

The preservation of sign after overflow is essent,1sl iortunately, these

conventions for the t:eatment of over/underflow are widely used on many

machines, including the IBM 7094 and, possibly, the Burroughs B5500.

Unfortunately, the new IBM 360 series hardware forgets the sign after over-

flow, but presumably that oversight will soon be corrected. It is possible

to prevent the u-recurrence from overflowing at all, but to do so costs

a noticeable retardation on most computers, as we shall see.

If over/underflow is treated as described above, any over/underflow

occurring in the u-recurrence will be practically inconsequential for

reasons to be given later. Therefore we must make a third assumption; we

assume that the program can inhibit the production of diagnostic over/underfJ.ow
messages and can ignore any over/

underflow indicators that might otherwise serve as superfluous distractions

during the computation of the u's , (This is not meant to imply that

those indicators are superfluous in any other context. Quite the Quii•rary.)

If' all three assumptions about the treatment of over/underflow are

valid then they cope with the problem far more simply, elegAntly and econ-

omically than any other scheme known to the author. There is reason to

dotubt that any comparable scheme could ever be devised for the p-recurrence.
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Now let the scale factor a be defined as the largest power of' the

machine's arithmetic base which satisfies

(dalj -e TQ~ and albil < TO for all1 i

where

The significance of this constant T is that over/underflow will later be

shown to contribute an absolute error no larger in magnitude then about

4- . lubs(J) to the computed eigenvalues. The values of r tabulated

above show how small T usually is compared with the rounding error level c

Evidently owtr/underflow wil2 hardly ever restrict the ronge of magnitudes

spanned by the accurately computed eigenvalues of J nearly as much as do

rounding errors.

Normally a is approximately

but there are exceptional cases where that expreion would overflow, io o

must be set instead to the largest power of the machineb arithmetic bouc,

These cases are ignored in what follows because they are susceptible to a

simpler analysis with the same rosults as are demornstrated below.

After a is known, the matrix J is scaled by being replaced by (oJ

Since a is 9 power of the boalue there are no rounding errors. But under-

flows may occur. These underflowr, result in the arinrlhilation of at most

20



those elements a and bi which satisfy

lail < 1/2 1lub (J) or Ib'I < 1/2 lubS(J)

These perturbntions are negligible compared with what follows, so they may

be ignored. Later the computed eigenvalues h i will be unscaled by dividing

them all by a • Any over/underflow which occurs here is fully deserved

and must be reported by the 'diagnostic machinery mentioned above to indicate

that some elgenvalues (just the ones that over/underflow) cannot be repre-

sented in the normal way without over/underfiow., Nothing more need be said

about scaling: we merely assume henceforth that

T l <, ub sP) S ,3T
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Two programs:

Now is the time to write out the u-recurrence explicitly in, say,

FORTRAN. There are two versions, according as overflow is prevented or

allowed. Both versions begin by constructing the arrays BB end A con-

ta ining

BB(I) b2
Bb 1  for I = 10 y, ., N

A(I) =

If 1bi. 1 1 < - then BB(I) will underflow to zero, but this amotunts to

a perturbation of no more than

in the given matrix J , and is included in the error analysis given later.

Note that BB(l) = 0.0 by definition, and that we can assume that

lxi < lubE(J) <_ 3

is satisfied by any number X which might usefully be considered as an

estimate of an eigenvalue.

Here is the segment of code which prevents any overflow in the u-recur.

rence; the constant RTETA has the value

RTETA vJT

22



The FORTRAN symbol ".GT. stands for ">"

U = 1.0

NU=O

DO 3 1 =I,N

U = (A(I) - BB(I)/U) - X

IF (U .GT. RTETA) GO T03

1 IF (U .GT. - RTETA) U = - RTETA

2 NU = NU + 1 ... when U < 0

3 CONTINUE

&00 Now NU = v(X)

Whenever the computed value of uI lies between and +J , it

is replaced in statement I by -yT. Consequently the quotient b 2/u

never exceeds

so overflow is impossible. Of course, uI may have been decreased in

statement 1 by as much as 2•-ý, but this -too is no larger than might

have been caused by decreasing a by the allowable perturbation

2- 2°: -lUbs(J)

Here is a simpler and faster program segment which is useable whenever

overflow is treated according to the conventions described above. The

constant ETA = r1

23



U = 1.0

NU = 0

DO 3 I 1,N

U = (A(I) - BB(I)/U) - X

IF (U) 2, 1, 3

1 U = - ETA ... if U was 0

2 NU = NU+ 1 ..1 if U was < 0.

3 CONTINUE

... Now NU = v().

Note that whenever any uI vanishes it is replaced in statement 1 by

U, = -n to forestall a subsequent division by zero. Whenever (rarely)

any uI overflows, its sign remains unchanged so that NU is treated

correctly; then u 1  is in error because the computed value of b /u

must be larger in magnitude than it should be. But the error in, u

is no worse than might have been caused by perturbing ai+1 by at worst

(il)22/p = r(,rn) <_ r . lub s(J)

And underflow, if it occurs, causes no more perturbation than n , which

is negligible.

All told, these subterfuges for circumventing the ill effects of over/

und,!rflow cause the computed value NU to be, instead of v(X) , some

value that would have been obtained had J first been changed in each

elen,;nt by at most

2* ' lub s(J) (in the first program) or

24



S° lubs(J) (in the second program)

before v(X) was computed without any intervention on behalf of over/under.-

flow. These perturbations will be shown later to affect the computed

eigenvalues by no more than 47 o lubs(J) . First we should. consider one

last programming detail.

The kth eigenvalue k is the kth jump-point of the integer valued

function v(x) ;

lim v(x) < k < lirn v(x)
x_%kk k +

(The multiplicity of the jump-point k is just the difference between

the upper and lower limits.) Can a similar statement be made about the

computed approximation NU(X) ? If so, any algorithm that works properly

for the exact function v(X) will work properly for its approximation

NU(X) . If not, if NU(X) could have more than N jump-points, then

great care would be required to design the algorithm in such a way that

it could not be confused by spurious jumps down. As it happens, no such

care is required on most machines.

We shall demonstrate 'below that, despite rounding errors and over/

underflow, the computed function NU(X) is a nyonotonic non-decreasing

integer valued function of X with just N Jumips. The only assumption

is that each arithmetic operation executed by the machine is a monotonic

function of its arguments despite rounding. For example, if A , B and

C are all positive numbers represented in the machine, and if the FORTRAN

program

25



X1 = A + B

Y1 = (A + C) + B

X2 = A - B

Y2 = (A + C) - B

Y3 = A*B

Y3-- (A + C) B

x4= A / B

Y4 = (A + C) / B

X5 B/ (A + C)

Y5= B/A

is executed, then XI < YI for all I = 1,2,3,4 or 5 • This assumption

is certainly valid for single precision computations on all of the machines

listed in the table above. Indeed, the builder of any machine which failed

to satisfy this assumption should be ashamed of himself.

26



The Monotonicity of NU(X):

The monotonicity of NU(X) will be derived as a consequence of the

properties of the successive values of' U , for which some notation is

required. Given any argument X , a number representable in the machine,

either program above will produce a sequence of values Un(X) and NUn(X) ,

the values taken by U and NU respectively after statement 3 has been
th

executed for the n time. In particular,

U (x') 1.0 and NU(X) -

UI(X) [A(l) - X] rounded etc. and

NJ (x) 0 0 if X < A(l) - e

Il if•X > A(l) -e

where 0 in the first program

r. in the second program

Note that no U (x) can lie closer to zero than +0 or -0 . At the end

of the D®-loop,

U - UN(X) and NU = NU(X) = NUN(X)

Thýe interesting values of X arc those where some Un(X) changes

,ign. These points sh.. be identi:f'ied precisely with the aid of a notat.ioJi

X' for the successor of X ; if X is a number representable in thmu-

chi.ne and eligible to be an argument for the programs above, then X' is

Lhe next larger eligible argument. Normally X will exceed X by one



unit in their last place being carried in the computation.

A "zero" Z of Un(X) is now defined to be any argument Z which

satisfies both

Un(Z) > e and -e > U_(Z')

A "pole" Y of U n(X) is any argument Y which satisfies

Un(Y) < Un(Y')

Un(X) can change sign only at a zero or a pole, though Un(X) may fail

to change sign at some poles. Between any two zeros of Un(X) must lie

at least one pole where Un(X) changes sign, and possibly some other

poles where Un(X) does not change sign. Let us examine these poles more

closely.

If Y is a pole of U (X) then

IBB(n)/UnI(Y)] > [BB(n)/Un.I(Y')]

because the contrary relation would prevent

U n(X) = [[A(n) - [BB(n)/U n_(x)]] - X]

where each pair of brackets means

"round [... and take care of over/underflow, if any" ,

28



from increasing when X moves from Y to Y1 . (Note that the oer/

underflow subterfuges do not destroy the monotonicity of the arithmetic

operations even if U (X) has to be replaced by - .) Therefore eithern

Y is a pole of Un-l(X) where U n-i does not change sign, or Y is a

zero of Un (X) . A backward induction yields the following statement:

If Y is a pole of U(x) , then there exists

some positive integer m < n such that

U m(Y) > 0 > Urn(y1) .

and for all integers i (if any) strictly between

m and n

Ui(Y) < Ui(Y')

with no change of sign.

We abserve that U1 (X) has no poles and just one zero. Therefore,

as U2 (X) is carried from U 2(-Q) = 0 to U2 (0) - -0 , it can have at

most two zeros separated by one pole where U changes sign, or one zero

and one pole where 2 does not change sign, or one zero and no poles ifL.

BB(2) is very tiny. In all cases one can verify with ease that N'U 2(X)

is a monotonic non-decreasing functiton of' X with at most two distinct

jumps from NLJ(-Q) = 0 to NU()(Q) !- 2 . Rather than extend this desired

property to NU (X) for all n by it long constructive argument, we shall

show that a failure of NU (X) to be monotonic would create a contradiction.

n9



Let n be the smallest integer for which NUn(X) is not a monotonic

function. Obviously n > 1 . Suppose NU (X) fails to be monotonic at Y ;

since

Sw NUn (-n) NUn (X) < n - NU (Q)-- n n

the failure must take the form

NI) (Y) > NU n(Y')

However, our hypothesis about n implies that NU n.(X) is monotonic,

which means

NUn-1 (Y) S_ NU n I(Y,')

Also,

•n (X) - NUn. (W 0 if' U, (X) > 0

ii 1 if' U n(X) < 0

so

0 > NUn(Y') . n(Y)

(Nu (Y.) - r "n u (y,)

n n-J

+ NIT i -lk NUn1 (y))

+ CNU)n.](Y) - NUn(Y))

> (o] + (o3 + (.-'] W, ..

.30



But this impl.ies, L[term] by (term) , that

NU (Y') NU (Y') and U (Y') >" 0

NU 1.(Y') - NUn-l(Y) .= , and

NUn (Y) N n-U (Y) + I and. U n (Y) < o

E'vidently Y is a pole of Un (X) . Therefore there exists some positive
niinteger m < n fror' which Y in a zero of U (X.) ;wo ,,hall have

U m(Y) > 0 > Um(Y')

Therefore Ntru (Y,) NU I(Y' ) I becauwie U M(Y') < 0

> NU mI(Y) + I by monotonicity ,

NU (Y) + 1 because Um(Y) > 0

Also, if there ti'o tiny integern' :1 strictly between in and n-1 ,

NU(Y,') - NU W(Y') , NUI(Y) '- N1iJ.(Y)

bocouue Y it, 0 polo of Ui with no change in :Ign, Thorefore

I
NU (Y') NU 1 M~ Nu)11(y') Nt) (p) I.2

who ron it wo ::i'iw iibove tih-i t

f NU1 1 1(Y') - NUn 1 (Y) 0)

I

!Si



Ibis contradiction proves that NU(X) is a monotonic non-decreasing fwuction

of X , as desired.

It seems su~rprising that so strong a result can be proved with no

apptoel to the continuum, nor any estimate for the errors in the values U n(X)

On the contrary, the values of U (x) can be completely different from then

mathematically exact values un that would have been obtained without

rounding errors nor over/underflow, even to the extent of having the wrong

signs. Fortunately, the errors in the intermediate results U n(X) are

of no interest beyond an assurance that the errors are not haphazard. And

the behaviour of NU(X) provides just that assurance.



I

Bound ing Round ing Errours.:

The next step is to show that if Xi < ]ub E(J) then NU(X) is pre-

cisely the value that v(X) would have taken if' J had been replaced by

some nearby matrix J(X) and all computations had been carried out in-

finitely precisely with neither rounding errors nor over/underflow subter-

fuges. The principles behind the analysis that follows are very much like

those to be foind in Wilkinson's books (1963, 1965). We shall try to describe

the elements of' J(X) in termt; of the numnbers that actually appear in the

avrithmetic registern of' the muchine during the computation, and in term,j of

the rounding error bound e tabulated above for several machines. The

ideas invo).%ed are beat illuntrated by the following examples.

Thoe P'ORTRAN assignment st tem.ent

C A * B

w1l3. not rp.0ila.ce C bY' thO produ-ct of' A and 13 t but will inateao oiat

C to a value

in~ which ityi J normailly bi'tindod by, esay,

H I

Not•e that A , . and the new value CO' are, defined quite preciuely, and

ntatlniy the previous equmtion ox'ct]y. Tho onty unknown quantity it y ,



but j?] is bounded by a known value E except when over/underfiow inter-

venes. Similarly, the assignment statement

C =A/B

actually stores a value

C = (i + O)A!B

where < C .

As a matter of fact, the situation is not always as described above.

In double-precision the values of p and 7 can be as large as 3c on a

7094, 5e on a B5500, and 16c on a 360. These unnecessarily large

errors are so repugnant to the author that he takes the liberty of passing

them directly from the machines' manufacturers to the reader, who may ac-

commodato them by multiplying e in the bounds given below by whichever

factor in appropriate for his msichine. For a similar reason, the author

chooses to prenume that the FORTRAN statement

C wA + B3

causes C to take prcluely the vilue

C V, (A .1 13 )/ (1 + a~

with I(,4, < c Only in double-precinion, and, than only on auome machineu,

ia it necousary to replace the last two relations by

C I (I + a)A + (i + (3)B



with 1cJ < E and liri < c , but this will weaken the error bounds to

be given below by a factor no larger than two.

The Construction of J(X) near J:

The first step in the construction of J(X) is the definition of

certain values A and B corresponding respectively to a and b

Let us set

BI L b if B does not underflow

S0 if 1b1l <

In eithor event, 113I b I < *'. And

BB3 i BB(I) (i )

where I is the relative error due to multipl:ication nnd nstirfieLl

<I c . (The primes used during the construction of J(X) do not de-

note successors.)

The vaLue of A1 depends upon X , and differr- from aI only to the

extent required to compensate for the efferts of over/underflow. Rensons



have already been given why we should expect that

IAI - all <_ 2 - in the first program

< IT in the second program

execpt for an ignorable contribution no larger than n . Let us stay with

the second program from now on, and ignore not only the scaling underflow

error n by setting

A(1) M al

but also agree to ignore the comparable error induced by underflow or state-

ment I during the computation of U1 I

The dissection of the FORTRAN statement

U- ((A(l) - BB(I)/U) - X)

to find its rounding errors is un inductive process, For I 1 I we define

A • A(1) m und

V A. " X ).ociroly, rind

ur [rA(,) - o.] . x] ' vJ1.. + -)v C

where IGI<c ,Evidently sign(v) ,t lgn (U)



I ii

We also set a] 0 and v - 1 . The induction hypothesis is that
0

for n 1,2,..., I-i we may write

V = A " + 9 ( (ni )BBn/Vnl n +

IA - a il

( r" < C a' I < C KI" E and

either v (1 + d&)(1 + Co")U or
n n n n

lul = and. < U/v < 1 and ' d' 0n n n n n

In any case, sign(vn) - sign(Un) 1 0

The hypothesis is obviout,3ly true for n 1 ,, since BB1 . 0 . Note that

Un reprevents what wav earlier referred to a3 U n(X) , and is a number

actually stored in the computer. The values BB n and a are also stored

in the computer, but An will. not be atored if it differs from a , arid
nn

itn iij figmnent of" tho imag:Lnfitioi -except, for' itig aigi.

Now for the advnnee to ri w I . The first volue to be Inapected is

]rudd~ (1 +' ,~n1/1

who re I K I < L, unleiii ovoy-Plow oe(:ura. (Undnrfilow ist beitng ignored. )

If thim quotitent oveurfl"owtsi then the remain:i.ng arithmnetic operationa are

irrelevarit because the scaling h•si enmired thit neither A(I) nor X c:ln

be bigger thnn



3.Q << EQ ;

therefore overflow will cause UI to be given the value

U= - sign(UI 1 )

and we may define

"A 8 ' / S a 0 and
AI I I

VI ý (AI - BB 1/U 1-) - x

These values satisfy the induction hypothesis.

If the quotient [BBI/UI.1 1  does not overflow, there is still the

possibility that the previous quotient [BB 1 -1 /UT. 2] overflowed to be

considered. In this case U 1.11 = Q and 0 < U I 1/vI1 < an , end we

define

AI 2 A(I) - [rB(1)/U 1 1 J + (I + fi" )BB/v 1.

mvidently

JA1 I " al (1 + f3")BB1I2./U1 ~ I/ 1- v 1 1

< (:L + C,) V0) 2 11/o 1 (1, 4. L) \T['

The 'ae'tor 1 4- c is unimportant and shall be dropped. Note too tha~t

A(I) [13B(I)/U .1 1 A1: (.1 + ) B/v,..

A 0 , + 0. + (1, 4 )BB VI



The ]a,-t relation is satisfied too iif neither [BB(I)/UI_1 ] nor

[BB(T-:L)/U _,2]1 overflowed, in which case we set A, = A(I) = aI , because

then v - (I + a//)(l + C1' )UiI Ii 1-1 I-

Continuing, if [BB(I)/U I.] does not overflow then the value stored

for UI will be

U1  [[A1  (0 + +{)(i+ .( + a'-)BB1 /v 1 _] - x]

((A- (1 + a")(l. (I .(1 + a' -)BBI/v 1 i)/(1 + a'

- x)/(i + a")
I/I

9 v/(I. + al)1+ (.V,))

where the rounding errorm of addition are bounded by I(41 < C and

Ia 1 <. , uhir resu.lt t:dvLrices the induction from n - I - I to n I

Li desired, and layt i :aI f-.rm foundaition for an error bound for the eigen-

v8 ].uo s,

Let the matrix J(X) be defined now to have

A1,1 - nX pin pluce of' , bnd

.* .(1 , )(:i, +* ,")(a.i I( + ) x') npac o±b
S (n -,4 nn II n-i

Corta inly J(X) isi clofle to J ; mo:rxi 1)e:...iiLy, but nog,,.ctintis terms

0 ' order (c 1.'11( • ,

IJ(x) - :II "". : 1 - (h-LAg a - ' + iiJT.: + /V-TH

eliementwl emup whem

i)9



J - diag J - only the off-diagonal terms b in J

H LO the tri-diagonal matrix with all elements = 1

Denote the eigenvalues of J(X) by

1< ()< ,(X)

to correspond with the eigenvalues ?i of J

4o



The Absolute Error in %k:

The reason for constructing J(X) was that NU(X) would be the number

of J(X)'s eigenvalues %i(x) < X , and now this can be proved. For

NU(X) the number of' values U (X) < 0n

- the number of values vn < 0 ,

and the v are to J(X) what the uncontaminated values u are to Jn n

And each eigenvalue Wi(X) differs from the corresponding \i by no more

than

lub s(J(X) - J) <_ 2 lub - diag JI) + cjXj

+ -Fn lub, (1i)

Here

and

2 cI lub S( IJ - di~ag JI ) < 2c lub SWJ

by virtue of' the more general form of our earlier result no. 2 with

-J 2 + + (s) . Finolly, the only values of X that will

concern uo below are those which approximate some eigenvwlue 1i 13

',;ýo can cortai:nly ut.-ioutac that rX < 1 max 1  lube (jW) to within

a negligible extra e.rror of the order of c.lXi ,X or those values of' X

we have

()- ?j < r W 3(c + I')max1 k.1



as a bound for the difference between the corresponding eigenvalues of

J(X) and of J . This means that, as X varies over the allowable

arguments, each eigenvalue xi(X) remains confined to some fixed interval,

r < %i(X) + r

We have already seen that for any given k there Is precisely one value Xk

which, with its successor X' satisfies

NU(Xk) < k < NU(X')

these values can easily be computed. Arid the relationship between NU(X)

and the (X) tells us that

Xk - k(Xk) <k + r UAfld

S (X' ) < X I

Since

0 < X Xk < 2c maxilyi on a rounding ?•Ichino

m• aoxikil on a trunct•ting nmchine

(we might av well, ntiuma now thot orithmet c :I,U roundod), we con uccept

either X or X, aiu an approximation -to \ and commit an error nokk k
l'irger than

r' + 2• cnxjj -( + 3.)maxjIN



ThIo bound compares Favourably with that obtained by Wilkinson (1965,

p). 156-5) for the •;turm-sequence (cp-recurrence) algorithm in the absence

of' over/underflow. In our notation his bound is 17E mfx 1 Ij , although

the use of our more refined methods reduces this to 8 .75E maxl I

This bound is not appreciably increased if Wilkinson's 1962 program is

nmended to cope with over/underflow, but then the q.recurrence becomes

much slower than the u-recurrence. Therefore the u-recurrence has all the

ndvantagos of speed, simplicity And accuracy over the y-recurrence. On a

computer using rounded binary floating point arithmetic, the biggest eigen-

vwlue can be computed to within a gunrnnteed relative error of 2.5 units

in itri lat place, and ri eigenvwlue wi.1l suffer a lorger absolute error.

For chopped arithmetic the gutirnnte*e is 4 units in the Last pl.ace. These

bori•d• are impre~ssively am•ll; but they are substt.•ntially lArger than most

of' he orrors observed in praotice.

Why?



The Class S of nelghbours of J

A nicer appreciation of the accurncy of the u-recurrence can be achieved

through the consideration of' the class of symmetric tr.'L-diiagonal matrices

twhich satisfy

i' .. s, :c J - d Ing ,i

For example, on the rounding binary computer mAent•oned above the ,thng

consists of those matrices J obtained from ,I by changing each off-

diagonal, element of J by at moat one unit in itui laot Np~le, The not

c is m convex set In the sense that if a nd 1  ara members of

then no are all matrices of the form

tJ + (i- t)S for 0 < t <,

lying "between" J' anI JI. X a ch nmtr:rx J in 9 had a not of' aigon-

valuell

< <
1N -4 IN ' I - N

and sa voriees over each cigonvuluo l varies over some &et AI

wnich can uijo be ohown to be a closod convex uut, In othur wordo, Uanocia-

ted with the class of matriues !t ' the riot of N intervlas

A " the "lct of oll x • for LJCol in

44



Slome of' theve, i~ntervaln, maiy OverlýP, but, I.L Is noon scon thoit no A It cn

be c~ontained stri.rctiy insi~da anothor, Thoer-fore, the .1ritervals A It harie

-the st~mc ordering tno the elgenvtilues It Obv:Iout;ly A :t 1.u o ontmniend In

but the i1nterval A khardly invor oucupPna more then a ariali i'rection of'

tha~t lattor intorirvl.

'The nignil'iHcnce of' the interviil A k iu thait f'or inont prtvnticti3. pur-

iponon cny nv.mlbfr it' A k , Ls an ncaptable tn ipprixoxitittiotn to kn((Il

other. [luch inight be the coe Vo.r oxtimple, If cac~h ofCT-din.gonal. Olerent

biof' LT wqr indtprndently i~ eror by as~ rnuh ct Pil~b1i b~ecouse of

prov'iouti rounding iartorti TIheo inepderie of' thel arroi'n iv, erictntiol;

~o'~oretionti~ moing the era'ovi in tho be ould convocivabl.y cound the

c igonva:luo u of' ~J ttt to be in ot'ror tit nll on,~ would be tho co o if'

14 i 0 1 welle 011110c1 OU13ly oom 'putod an 2I- 0 14 L+4ýv 
0 

-

Au long un the arvorv~ in tho 'U i'o indvixaidonto the width of tba inter-

v tiil. A 1,iu un Indicedt,on of' thti cxt"Qnt to which It mutit be x-mgurded av

11"Ific.1,1 pv bly u t'ii:1n* An( iic i h , t o civro v inrvh diiced by tho -pi-,ogrjviiiw

innl~yzed herc contributevi neg:1.ti~bly to thlu rcpb uncortu inty nhull.

now bL dermonu Lrn tod.
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Let J(X) be defined to heae elements - a n and

+ + +n- )(1 + ') b , where the Greek

letters were defined during the construction of J(X) , Except for terms

of order a which shnll bo ignored,

It n-1 - b n-I P.l c •Ib n-11

so j(X) belongs to 9 and eLh eigenvaluo Ž%k(X) of j(X) lies in its

corresponding intervwl Ak e Also,

except for ignorable terma of order il , o

k x :k(X)I r(X) 6 vIxl + 3,t' aIx

t.nd if Xk and ita B titor X are dt'irod, na before, by

It It
Nu(X < k ) U(X'

then

k &k(XId< -ýPd4 -(Id

If orithmotic in rounded, then

X" , <_ 2c mu , XI,:l , It

4 6



(except pass-lbly when X" X r which In Ignored). Putting n'.1. the

kk

A (X) reaipectively by no moiro thtin

On n binary machine with rounded floatinig point srithmetle win mft nummarlze

not d:iffer by moro thnn 1 ± unltm in Ito lant p~nue from the t'egn

Vn IUO k of' riorttnt intrix eaarh alement of' which difi'orm from the aur.-

reaIpoclning elfment of' J 'by nt mont one unit IM itH ltnnt PlhiCdp P1Ub An

ribtiluto orroz' of

,5,c

I'Th~.)n oveir/ unrflow mV0 ub tarl'upti t

In othur wordap U.' J ia o3l'osdy unaertain In eo wcih ~.niomt by tjovrol0.1

unitu .1.1 itc lou~t pluce, and if'

(whluh :lo not often ni rurctvi l on n ince ~ < 10 oil oancl of' tle ma chi;no t

tnbulintedp even In double-pj.rectniton)o than the additionaL.1 meorteiinty intro-~

duced by thu comp-utation of' x, W:1.11 be inioigni±'icnt when compurod with

the~ inrit~'nnia urnnrtnlnty in N oauted by uncertainty in J I If'%

4+7



is intrinsically uncertain by only a few units in its lant plce, then the

approximation to kk will be accurate to within a few units in its last

place too despite the fact that Ak is much smaller than max i jQi . This

partially explains why some of the very small eigenvalues of symmetric tri-

diagonal matrices have been computed to such unexpectedly fine relstive

precision by the u-recurrence.

48



Inniens it tve .,igenvna.ueos:

But why nFF, the smaller eigenvnluen of J no frequently (but not

i~wayte) so muc-h laess ensitnlive to nmall reoritive perturbattions In J than

might, be suggesited by if..mple, exnmplei l:.ke -the following?

\.l-c 1J -. I . I ) & 1 " -.ý C • 2 2" -C

Unlike this example are many othern where even the tiniest eigenvolues suffer

relative (rather than absolute) displacementsi which are of a comparable order

of magnitude with the relative changes in the off-di&gonal elements of J

(Aithougn not always eany to explain, it Ai, often observed thut J'n eigen-

valueu are l.ess snii itive to relative perturbntlona in the off-diagonal

elements then to compmrrible reltitive perturbatitonri in the diagonal elements.)

An extreme example of' thin phenomenon ir i:rovided by those nattriceu J

whoie diagonol elementn all vwniah. Thetse matricem turn up during certain

comr•utationu of t1ingultir vtw1Wxuo; .iee Golub and Khen (1965) p. O3Z. The

methods ubed above c(n be exploited to prove thort

If' J Ji. an NXN ayinmetric tri,.diagonnl matrix,

:1±'l diog J w0 a nd if IbJi < clJ]

then the ordered elgenvaluei :L of' J an'd

X.i + bhi of J + 6,,T nt:isfy

I N_ I% I/ (I - N ,)

provided Nc < I .
49



An outline of the proof follows. Write

b4 + bb " is)l 4. 0 ) with < e

Without loes of generality we may assume

bAO for 1<i< N

Corresponding to the u-recurrence applied to J., xl is the corresponding

v-reourrene, say, that belongs to (J + 5J) x. x they can bent be compareid

when written side by side thus:

U WX "V 1 b 2. ( + WUXI

It is well known and easy to show that both J and J + 6J have only Him-
ple elgenvalues \ k and X I + b?\k respactively, and that uN 0 if and

only if x is an eigenvwlue of' J , and that v, a 0 if' and only if' x

is an eigenvallie of' J 4- ?UJ , (of. Wilkinson (1965) p. 00,)

Our obJect now is to show thet each hk is the k th igenvolue of'

some matrix which dif'fer from J + bJ by termm of order Ok rather

than •IJ( , There are two cntion accordi;ng as N is odd or even,

If N 2n-1 we define the factora (1 + ,ji) via

1+ 31n ,
'Z+l (I + ýi) (1 + 71) if I > n

- + . + ) /(I + yi) i' i <_ n
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w 0.( + uand xw -yý

nnd obzImrvo that

w X -x+

Thin ia just tho w-re~lurrenco, may) belonging to the trnntr x

J(X) x- X1 J + ?)J 4- disg~x.~ i X1

r.,inc IJ+ 6~J - J w~li jxdJtdigjlx

<. lxi d1&g(0. - a) . L)+

19' N c < 3., the ItL~ 0.onvatue X it + &k i of J' tij diffZors X'r%, the

lkth a:L~on~vujuc of J7(x) by nLo more than N~ lX 1/(2. Na) . 14ut tile t

Ovigenva1.we of'J.I :i, juat 'k k ance u.ign(w,) a ei,&n(u,) ±'Or all x

a nd w N w UN 10 for )C* k Thereforc

5.1



A ai•m.ar sciemnA worKs wnen w is even. Thus, one can hardly be

surprised in this case when each computed eigenvalue of such a matrix J

is correct to within N units in its last place despite a wide variation

in the orders of magnitudes of the eigenvalues.

The possible persistence of high relative precision in many of the

tiny eigenvalues of wider cleases of matrices J aw~its a systematic

explanation with predictive powers, in the absence of which it is hard to

say when a small computed eigenv&lue has higher relative precision than is

implied by the absolute error bound

(5e + 3T)mOxjI I

Concluoigin!

There are fester programm then those described hero, but none more

elegant nor more accurate.
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